Initial size enables speedy analysis of laparoscopic procedures

Laparoscopy is a surgical technique in which a fiber-optic camera is inserted into a patient’s abdominal cavity to provide a video feed that guides the surgeon through a minimally invasive procedure.
Laparoscopic surgeries can take hours, and the video generated by the camera — the laparoscope — is often recorded. Those recordings contain a wealth of information that could be useful for training both medical providers and computer systems that would aid with surgery, but because reviewing them is so time consuming, they mostly sit idle.
Researchers at MIT and Massachusetts General Hospital hope to change that, with a new system that can efficiently search through hundreds of hours of video for events and visual features that correspond to a few training examples.
In work they presented at the International Conference on Robotics and Automation this month, the researchers trained their system to recognize different stages of an operation, such as biopsy, tissue removal, stapling, and wound cleansing.
But the system could be applied to any analytical question that doctors deem worthwhile. It could, for instance, be trained to predict when particular medical instruments — such as additional staple cartridges — should be prepared for the surgeon’s use, or it could sound an alert if a surgeon encounters rare, aberrant anatomy.
“Surgeons are thrilled by all the features that our work enables,” says Daniela Rus, an Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science and senior author on the paper. “They are thrilled to have the surgical tapes automatically segmented and indexed, because now those tapes can be used for training. If we want to learn about phase two of a surgery, we know exactly where to go to look for that segment. We don’t have to watch every minute before that. The other thing that is extraordinarily exciting to the surgeons is that in the future, we should be able to monitor the progression of the operation in real-time.”
Joining Rus on the paper are first author Mikhail Volkov, who was a postdoc in Rus’ group when the work was done and is now a quantitative analyst at SMBC Nikko Securities in Tokyo; Guy Rosman, another postdoc in Rus’ group; and Daniel Hashimoto and Ozanan Meireles of Massachusetts General Hospital (MGH).